
Proof of Milnor-Thom bound

The statement

Theorem 1. Let fi ∈ R[x1, · · · , xn] i ∈ [m]. Then the number of connected components of

the locus defined by fi ≥ 0 is bounded by 1
2(D + 2)(D + 1)n−1 where D =

∑
i deg fi

An important lemma

Lemma 2. Number of non-degenerate solutions of f1 = f2 = · · · fm = 0 is at most
∏
i deg fi

Proof. Important thing is that since R is not algebraically closed we can’t use Bezout’s

theorem directly. Let a be a non-degenerate solution. By definition its Jacobian is non-

singular and viewing fi now as elements of C[x̄], the inverse function theorem says that a

is an isolated root. Now, we may apply Bezout’s theorem and conclude that the number of

such a’s is ≤
∏
i deg fi

Milnor-Thom for a hypersurface

Before we do this there is an important technical proposition we need.

Proposition 3. If f is such that ∇(f)(x) 6= 0 ∀x ∈ V (f), then the system of equations,

f = ∂1f = · · · ∂n−1f = 0 has only non-degenerate solutions.

Proof. Direct from [Burgisser et al., 2010]. Let V := Z(f, ∂1f, · · · , ∂n−1f). Define g : V →
Sn−1 as g(x) = ∇f

||∇f ||(x). Since the graph of g can be realized as a semi-algebraic set defined

by

{ yi∂if(x) ≥ 0, y2i ||∇f(x)||2 = ∂if(x)2 | i ∈ [n] }

By the semi-algebraic Morse-Sard theorem we have that the space of the critical values has

dimension< n. Thus, ∃w( say ) = (0, · · · , 0, 1) such that w,−w are not critical values. Now,

g−1(w)∪g−1(−w) = V as the gradient is non-zero but the first n−1 partial derivatives are.

Let α ∈ V . We need that α is non-degenerate. For any x ∈ Rn, denote by x′ its projection

to first n − 1 coordinates. Since, nth derivative is non-zero we can use implicit function

theorem to obtain a C∞ function h such that the map x′ → (x′, h(x′)) is a diffeomorphism

to a neighbourhood around α. Now,computing partial derivatives we obtain,

∂if(x′, h(x′)) = −∂nf(x′, h(x′))∂ih(x′) i < n

=⇒ ∂ih(α′) = 0 i < n

∂igj(α) = −∂2i,jh(α′) i, j < n

=⇒ ∂2i,jf(α) = −∂nf(α)∂2i,jh(α′) i, j < n

Theorem 4. Let f ∈ R[x1, · · · , xn] be such that n ≥ 2, deg f ≥ 2,∇f(x) 6= 0 ∀x ∈ V (f)

and V (f) is compact, then, b0(V (f)) ≤ 1
2d(d− 1)n−1 where d := deg f
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Proof of Milnor-Thom bound

Proof. Let V (f) =
⋃
i Vi where Vi are the connected components. Since closed subsets of

compact sets are compact, Vi is compact. Since, Vi is a connected component, it is irre-

ducible and is therefore a variety. From the definition of dimension of a variety (See Mumford

[1976]), since every point is smooth, its dimension is n−1. Define πn := (x1, · · · , xn)→ xn.

Let pi be the minimum of πn on Vi and let qi be the maximum. At both points the

gradient should be along the derivative of πn = (0, , · · · , 0, 1). Thus, each such point,

pi, qi ∈ V (f, ∂1f, · · · , ∂n−1f). Moreover, ∀i pi 6= qi because if not, then that implies that

∀v ∈ Vi, πn(v) = πn(pi) =: a Now, that means that Vi ⊂ V (xn − a). But we know from

above that dimVi = n − 1. Thus, Vi = V (xn − a) which contradicts compactness of Vi.

Now, b0(V (f)) = 1
2 |{p1, qi}| ≤

1
2 |V (f, ∂1f, · · · , ∂n−1f)|. By the above proposition all the

zeroes are non-degenerate and by Lemma 2 we get the required bound.

Extending to semi algebraic sets defined by many

polynomials

Let S = {x̄ | f1(x̄) ≥ 0, · · · , fm ≥ 0}. Dealing with this presents us with 2 issues that

prevents us from using the previous machinery - One is that is not a zeroset, and the other

is it’s not necessarily compact. We solve the second issue first.

Solving non-compactness - Since we have a metric namely the Euclidean one on Rn

we simply look at S∩Br i.e. those points in S with distance from origin at most r. This can

be realized by adding another polynomial constraint f r0 = r2 − (
∑n

i x
2
i ) ≥ 0. The following

lemma shows that obtaining a bound for this restriction suffices.

Lemma 5. Let Ki ⊂ Rn ∀i ∈ N such that Ki ⊂ Ki+1, then b0(∪i∈NKi) ≤ supi∈N b0(Ki)

Proof. Let C1, · · · , Cs be the connected components of ∪i∈NKi. This implies that ∃kj Cj ∩
Kt 6= φ ∀t ≥ kj . Choose, m = maxj kj . Now for each Km and beyond, the intersection

with each Ci is non-trivial. Moreover, they can’t merge into the same connected component.

Thus, supi∈N b0(Ki) ≥ b0(Km) ≥ s = b0(∪i∈NKi)

Applying this lemma with Kn = S ∩Bn will give us that we need to just upper bound the

compact set S ∩Bn for an arbitrary (but fixed) n.

Making it a zeroset -To do this we modify S ∩ Br by adding an ε to each fi and

adding the polynomial constraint fn+1 =
∏
i(fi + ε) ≥ δ , ε ≥ εm+1 ≥ δ > 0. Thus to

clarify Sr,ε,δ := {x̄ | f r0 + ε ≥ 0, · · · , fn + ε ≥ 0, fn+1 ≥ δ}. Let’s look at the boundary of

Sr,ε,δ := ∂S. At the boundary at least one of the inequalities should be tight and the point

be in S. But if any except the last is 0, the last inequality can’t hold. Thus the boundary is

defined by ∂S = V (fn+1). This is clearly compact. we can make it non-singular by choosing

δ appropriately (This is by Sard’s theorem as we need to choose a δ such that it isn’t a

critical value of fn+1 and that is possible as this set isn’t dense). Applying Theorem 4 we

get that.

b0(∂S) ≤ 1

2
(D + 2)(D + 1)n−1 , D =

m∑
i=1

deg fi
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To make this exercise meaningful, we need the following result.

Lemma 6. b0(S) ≤ b0(∂S)

Proof. Since connected components are disjoint if they meet at boundary they do so in

different components. Thus, we are done if we show that each connected component C of S

satisfies C ∪ ∂S 6= φ. For a contradiction assume C doesn’t. Then, for each x ∈ C, we have

Brx ∈ S \ ∂S. The union of these is an open cover of C. Since, S in compact so is S and

thus we have a finite subcover. Let R be the min radius rx of this set of this finite set of

balls. The open set {x | dist(x,C) < R} ∈ S \ ∂S is ⊃ C and is clearly connected. This is

a contradiction as a connected component is the maximal such.

So we have that, b0(Sr,ε,δ) ≤ 1
2(D + 2)(D + 1)n−1. Sr =

⋂
ε<1 Sr,ε,εm+1 To wrap up things

we just need the other counterpart of 5 and that we mention without proof.

Lemma 7. Let Ki ⊂ Rn ∀i ∈ N such that Ki ⊃ Ki+1, then b0(∩i∈NKi) ≤ limi→∞ inf b0(Ki)

Blackboxes

Theorem 8 (Bezout’s Inequality). The number of isolated solutions of f1 = f2 = · · · fn = 0

are atmost
∏
i deg fi where f ∈ k[X̄] such that k is algebraically closed.

Theorem 9 (Semi-algebraic Morse-Sard). Direct from Burgisser et al. [2010]. Let V ⊂
Rn, W ⊂ Rm be semi-algebraic subsets and smooth submanifolds, and let φ : V → W be a

smooth, semi-algebriac map. Let

Σ := {a ∈ V | rk daφ < W}

denote the set of critical points of φ. Then dim φ(Σ) is < dim W

Theorem 10 (Implicit function theorem). Let f be a Ck map U ⊂ Rn × Rm−n → Rn. Let

p = (x, y) ∈ U such that the derivative Df(p) restricted to first n coordinates is invertible.

Then there is a neighborhood V ×W of p and a Ck smooth map h : W → V such that

x = h(y) and f(h(y), y) = 0

The above exposition follows basically the approach of Milnor [1964] but uses the elementary

(avoiding Cech cohomology) proofs of certain results as in Burgisser et al. [2010] to prove

the required result.
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