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Introduction

Let us generalize the familiar notion of linear dependence.

- Asubset S of a field L is algebraically dependent over a subfield
K if the elements of S satisfy a non-trivial polynomial equation
with coefficients in K.

- Algebraic/Transcendental Numbers: L =C ,K=Q,S = {a}
- Polynomials : L =F(xq,--- ,Xn), K=F, S={f1,--- ,fa}

The problem is then,

- Given a set of polynomials {f,--- ,f,} determine if they are
algebraically dependent i.e does there 3A € F[xq,--- ,X,] such
that A(fy,--- ,fn) = 0. (Ais called its annihilating polynomial ) .
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Why Care?

- Why not? A natural algebraic question
- Connections to field of Math like Algebraic Geometry

- [Ptoski “05] Elementary proof of Bezout's inequality

- [ Ptoski, Jelonek ] Proper polynomial maps - relations to Jacobian
conjecture

- Jelonek has given a proof of the effective Nullstellensatz based on
Perron’s Theorem

- Algebraic formulation of control theory

- Not convinced yet ?
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TCS Applications




Application 1- Schonhage’s Proof

- [Shonhage '76 ] gave an elementary proof of Strassen’s lower
bound

- The classical proof uses Bezout's theorem awhose proof is quite
involved and uses many tools from Algebraic Geometry

Every circuit computing the n polynomials xi, x5, - - - , x}, has size
Q(nlogr).
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Application 2 - Kalorkoti's Lower Bounds

- A is an arithmetic circuit in which every gate has
outdegree one.

- [ Kalorkoti ’85] gave a lower bound for size of rational
functions.

Every formula computing the determinant of an n x n matrix is of
size at least Q(n®)
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Application 3 - Rank Extractors, Condensors

- [Dvir,Gabizon, Wigderson "07] Construction of explicit rank
extractors, extractors.

- Rank extractor is set of k polynomial maps that outputs n
polynomials to k algebraically independent polynomials of
slightly higher degree.

- E:TF" — {0,1}" is a extractor for polynomial sources if for every
(n, k, d)-polynomial source the random variable E(X) is €*-close
to the uniform distribution on {0, 1}™.

Poly. Source
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Application 4 - Depth-4 Blackbox PIT

- Polynomial Independence Testing : Given a circuit, test whether
it computes the 0 polynomial.

- Depth 4 means that the circuit represented by

> II1>-1I1s(R,s,n) can be written as ZL 1_[;1 fij and degree is
bounded by 4.

- [Beecken,Mittmann, Saxena ’13] defined a notion of rank for
circuits as rr(C) := trdeg{fi;}

Theorem - BMS "3
Let r = Rs(R,s). If char(K) = 0 or > ¢', then there is a blackbox
poly(srsn)®’*" time identity test for S22 [1s(k,s,n) circuits
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The Easy Case




Characteristic 0 (or large) fields

The earliest criterion was due to Carl Gustav Jacob Jacobi in 1841
which naturally leads to a randomized poly-time algorithm .

Let f; € K[x] be a set of non-constant polynomials with deg(f;) < d
and let char(K) =0 or > d"
rkep(Ux(f)) = trdeg(f) where Ji(f) = (9i)i,

or less precisely, f is algebraically dependent iff its Jacobian is 0.

Using the DeMillo-Lipton-Schwartz-Zippel lemma, we can check
whether the det(Jx) = 0 by evaluating it at a random set of points in
polynomial time.
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What's the deal with finite characteristic fields ?

- Algebraic dependence depends on the field we are working in.
For example, x + vy, xP + yP are independent over Q but
dependent over FF,, (or any p characteristic field)

- The single polynomial f = xP has a 0 Jacobian but it is clearly
independent.

- Also, p™" powers are not the only bad cases. For example,
Py, xyPY)[ =0

- Thus, there is no trivial way to “fix” the Jacobian criterion
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Partial Results




Sufficient Conditions

Since the Jacobian criterion doesn’t hold in the finite characteristic
case, we can try to see if there are any unidirectional results

Let fj € K[x] be a set of non-constant polynomials. If under some
monomial ordering o the th leading coefficient fis are algebraically
independent, then f; - - - f, are independent

If fis are algebraically dependent, then rR(Jx(fi---fa)) <n

These, however, give us no algorithm to compute independence
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Is it computable?




Perron’s Bound

OsRar Perron in 1927 gave a degree bound for the annihilating
polynomial which enables computability via a natural algorithm.

Let fi € K[x3, -+ ,Xy] be a set of n + 1 non-constant polynomials and
let §; := deg(f;). Then 3A € K[y1, - - -, Yn41] Such that
A(f1,--+ ,fay1) = 0 and

01+ Ot
deg(A) < — < (max{61,---,0 n
0(A) < kM < (max(B - i)

Kayal [Kay '09] generalized it to sets with arbitrary number of
polynomials over fields of zero characteristic. His result depended
on the transcendence degree and was independent of the number of
variables. Mittman [Mit "13] generalised Kayal's result to fields of

arbitrary characteristic.
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Generalized Perron’s Bound

Let fi € K[x, -+ ,Xm] be a set of n + 1 non-constant polynomials
and let §; := deg(f;). Assume that X € K™ is an affine variety of
dimension n and of degree D. If the mapping

F=(fi,- - ,fas1) : X = K" is generically finite, then

3A € Ky, - -, Ynqa] such that A(f, - -+, fas1) = 0 and

deg(A(y?W, "' 7yﬁ?ﬁ)) < Dé1---dnpa
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The “trivial” algorithm

SIGTACS

- Since, the annihilating polynomial’'s degree is bounded we can

consider a general equation of the polynomial

(= Z aWHy,-W', ay € K

Miw;<d" i

- Now substituting the fis in y;s and setting coefficient of each

monomial to 0 will lead to a system of linear equations.

- If no solution exists then the polynomials are independent.

- But since the degree (d") is high, this is not an efficient solution

and its complexity is in PSPACE.



Computational cul de sac

Let d1,---,0, > 1and consider the polynomials f; := xq,

5 On— )
h=xo—x", -, fo=Xa =X, fop1 =X

- Moreover, Kayal showed that computing even the constant term
of the annihilating polynomial is #P—hard

- These results thus prove that any route via the annihilating
polynomial is inefficient and that other methods have to be
devised

SIGTACS 14



A New Criterion




Witt-Jacobian Criterion

SIGTACS

- [Mittmann, Saxena, Scheilblechner "12] gave the first non-trivial

algoithm to test independence.

- The idea is to lift the problem to a char 0 field namely, the

p-adic field (Z,).

- Reduces the complexity to NP#P
- Details too gory to present ( read, | don’t understand it )



A poly-time algorithm ?




Generalizing the Jacobian
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- Pandey, Saxena, Sinhababu (2016) gave a new criterion that

relates algebraic dependence to approximate functional
dependence

- It identifies the inseparable degree as a crucial parameter and

shows that if a set of polynomials are independent then they
can't be approximately functionally dependent up to any
precision greater than this inseparable degree.

- Conversely, any set of polynomial if truncated beyond their

inseparable degree become approximately functionally
dependent.

- This gives an algorithm to check if f is alg. independent by

checking approx. functional dependence upto the inseparable
degree .
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Mathematical Preliminaries




Field Extensions

- If Kis a subfield of L then L is said to be a field extension of K
denoted by L/K .

- If L/K, then « € L is said to be algebraic over K if 3 f € K[x] such
that f(a) = 0. Of all such fs, the one with the lowest degree is
called the minimal polynomial of o denoted by MiPo(«).

- If every element of L is algebraic over K, then the extension L/K
is said to be an algebraic extension; otherwise it is said to be a
transcendental extension.

- An algebraic extension L/K is said to be separable if
Va € L, MiPo(«) has no repeated roots in its splitting field.
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The Theorem

Denote f= {f1, - ,fm}

If trdeg f = k, then there exist algebraically independent
{g1,---,gr} C fsuch that for random a € F", there are
polynomials h; € F[Ys,--- , Y] satisfying, ¥ i € [m],
fFi(x+a) = h='(ga(x + a), ..., Gr(x + Q)

If f are algebraically independent with inseparable degree p'. Then,
V1< t<p forrandoma e F" 3n; € F[Yq, -, Yna], V) € [m],
fjgt(x—"_a) = hjgt(f'l(x—"_a)? e 5E71(X+a)7f[+'\(x+a)7 e 7fﬂ(X+a))

Vt> p' for random a € F" Ah,
ft(x+a) = h=<H(fi(x+a), -, faa(x+ a))

Proof in the next talk !
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Questions?
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