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1 What is this?

This is a hodgepodge of definitions and theorems picked up from various sources to
give the reader a brief introduction to the area of sheaf cohomology. Therefore, none of
the material presented here is an original work of mine and no such assumption should
be made even if a citation isn’t provided. As this is a project report for a topos theory
course, background in category theory is assumed but nothing more i.e all definitions
related to cohomology are provided. This exposition also omits most proofs and instead
points to the sources where they are available not because the proofs are hard or require
extra machinery (infact most are just routine diagram chasing arguments often seen in
categorical proofs ) but because including them would make it significantly voluminous
and there is no point in reproducing them. | hope the reader will find this text helpful.
This has been written in haste and the author is solely responsible for (m?)any errors that
might be present.
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2 Abelian Sheaves

In the course we have only considered sheaves over the category of sets but now we shift
focus to those over abelian groups (and then to modules ). The important observation
that is used in most of the proofs is that the stalks uniquely determine a section i.e for
any sheaf F s,t € F(U),s =t <= sy =t Vo €U

This lemma can be used to extend our set-based construction to incorporate algebraic
operations. For example, the T'L functor as we defined it was a set, i.e TLF(U) :=
{olpoo =id}

Definition 2.1. A ringed space (X, Ox) is a topological space X together with a sheaf of
rings Ox on X. The sheaf Oy is called the structure sheaf of X.

Definition 2.2. An Ox-module is a sheaf F such that F(U) is a Ox(U)-module and
the restriction maps are module homomorphisms. The category of all such modules is
referred to as Modo, (X) or just Mod(X)

An easy observation is that any sheaf over abelian groups is an Ox module where
Ox (U) = Z is the constant sheaf. Thus,

Ab(X) —“ Mod(X)

As expected, the category Mod(X) is abelian. That is it is additive is easy to see by
defining addition stalk-wise. The kernel is also easy to construct but construction of the
image requires sheafification. For a proof see [9, Tag 01AF]

3 Enough (of) Injective Objects

Having enough injectives is an essential property to construct cohomology groups and
we know that a topos has enough injectives. In this section, we will review the definitions
and see that the category Mod(X) has enough injectives too.

Definition 3.1. An object I € Ob ¥ is injective if for any monomorphism m : A — B and
f:A—1 dg:B— Isuchthatgom=f

Definition 3.2. An category is said to have enough injectives if for every objext A Im :
A — I where m is a monomorphism and | is an injective object.

Lemma 3.1. []; A; is injective iff A; is injective Vi

Proof. Hom( _,I) is a left exact functor as it is right adjoint to the 7 ® _ functor (recall
Hom- tensor adjunction). The right exactness holds as the requirement is that the map
induced by the mono m : A — B from Hom(B,I) — Hom(A, I) be surjective which fol-
lows easily from the definition of injective objects. Now, Hom( _, ], Ai) = [, Hom( _, A;)
which is exact iff each of the functors are which happens iff A; is injective Vi. O
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Let us see the ramifications of this in an Abelian category
Theorem 3.2. If R is a commutative ring with unity, the category R — Mod of R- Modules
has enough injectives.
Proof. We will just sketch an outline of the proof. Refer to [10] (or [8] for an explicit one ).
1. Characterization of an injective group - G is injective in (Ab) iff G is divisible ( i.e
Vge G,VneZ*Ih e G,g=nh)

2. Prove that if G is injective then for any ring R, the R-module Hompg (R, G) which
is the R-module of abelian group homomorphisms from R to G where for each
f € Hompg(R,G) the multiplication is defined by (r.f)(s) := f(rs) r,s € R,

3. Take the injective group G to be Q/Z which is also the cogenerator in the category
of Abelian groups.

4. Show that there is in injection of every R-module F into []c o, (7, ) £ Where E is
any injective module (more specifically it is taken to be Hompr(R,Q/7Z))

Theorem 3.3. Mod(X) has enough injectives.

Proof. Let F be an Ox module. Its’ stalks 7, are Ox, modules and by the previous
theorem can be embedded into an injective Ox , module I,. Construct I(U) = [[,cy Lo-
This is injective as for any given mono A — B, just look at the stalks, construct the maps
h, : B, — I, and these then give a map h : B — I by the universal property O

4 Homological Algebra

In this section we will define the necessary concepts that we need from homological
algebra.

Definition 4.1. A (cochain) complex A® in an abelian category <7 is a collection of objects
A; of o i € N, together with morphisms d; : A; — A;11 suchthatd; .1 od; =0 Vi. The
maps d; are called the differential maps of the complex A®.

Definition 4.2. The n'* cohomology group written H" (A®) := Ker d,,/Im d,,_1. A com-
plex A®is exact if H" (A®) =0 Vn > 1

Definition 4.3. A pair of morphisms f,g : A* — B*® is chain-homotopic if there are a set
of morphisms k; Ai+1 — B; such that fi—gi= dB,i—lkifl + k‘idA’i Vie N
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Lemma 4.1. A morphism f : A* — B*® induces a map between the cohomology groups.
Moreover, these maps are equal if the morphisms are chain homotopic

Definition 4.4. Given A € <7, a complex A*® is said to be a resolution of A if H? (A®) = A
and it is exact. Moreover, if each of the A; is injective it is called an injective resolution.

Let us use the fact that Mod(X) has enough injectives to create an injective resoltion
of an arbitrary object A. First we create a resolution by taking injections, and then the
cokernel and then the injection and so on. We then only retain the injectives in the chain
by taking compositions.

. C . i
0 A A 0 Ig 0 Cok:er(za) *1> Ié’oker(io) o

A 20 0 i10CQ 1
0 A IA ICOk:er(io) e

Wherin the last representation is just a compact notation that can be read as I°® is an
injective resolution of A. Note that this is not necessarily unique as an object can be
embedded into many injective objects. Now, we see an important result which allows us
to define homology groups of an object.

Theorem 4.2. Let I* (resp. J* ) be an injective resolution of an object A ( B). Then any
morphism f : A — B induces a morphism of complexes f* : I* — J*®, which is unique up
to homotopy.

Corollary 4.2.1. The folllowing hold for R'F(A) = H'(FI®*) where F is any left-exact
functor.

1. R'F(A) is well defined
2. RYF(A) is naturally isomorphic to F
3. If Ais injective, R'F(A) =0 Vi >0
Proof. 1. Taking A = B in the theorem and taking the map f = id4, we get that any
other map is other map is homotopy equivalent to this. Clearly, the identity on A
induces an identity map on the homology groups H*(FI*), H'(F.J*) and thus, they

are isomorphic. This makes sense as from 4.1 homotopy equivalent morphisms
induce same maps.
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2. Follows directly from the definition of H® and the fact that F is left exact and thus
preserves limits which gives H(F) = Ker(Fio) = FKer(ig) = FA.

3. The resolution I* isjustAand I; = 0¥i > 0. H® = F A, rest are 0.

s 0 and Derived functors

Definition 5.1. A collection of covariant functors {F* |i > 0} such that every short exact
sequence is extended to a long exact one in a natural way i.e given

0 A B C 0
ls [s
0 A B c’ 0
0 —— FO94 — FOB —, poc — %, g1y F'B o -2
I E I
0 —— FO94 —  FOB —, poc — %, g1y F'B Flo -2 2.

Definition 5.2. A set of definitions related to 9— functors

1. Exact 90— functor - : Given any sequence, the extended one is exact.
2. 0— functor over G: A 9— functor {F*} such that G = F°

3. Universal 9— functor : {F*} is universal if for any {F*} a morphism F° — G° can
be uniquely extended to a morphism of 0—functors

4. Effaceable 0—functor : {F*} is effaceable if for any injective object G*(I) = 0 Vi > 0

Now we state one of the most crucial theorem of this section. The proof involves a lot of
messy diagram chasing and can be seen in [10], outline of a (partial) homological proof
can be found in [4] which uses snake lemma and horseshoe lemma.

Theorem 5.1. If F : € — 2 is a left exact functor between abelian categories where
€ has enough injectives, then the R®* = {R'F} is a universal exact O—functor over F.
Moreover, for any exact effaceable O—functor {G*} over F, the morphism ¢ : R®* — G* is
an isomorphism of 0— functors over F.
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6 Sheaf Cohomology is just R'T'(X, )

Using 5.1, we can obtain universal exact d—functor over the global sections functor
X, _): Mod(X) — Ox(X) — Mod ( defined by I'(U, F') := F(U) ) as we have al-
ready seen in class that it is left-exact. This gives us H*(X, F) := R'T'(F) which is known
as the i* derived functor cohomology group.

Similarly, given a morphism of ringed spaces ¢ : (X, Ox) — (Y, Oy) we have a left exact
functor ¢, : (X, Ox) — (Y, Oy) which induces a functor between the Mod(X) — Mod(Y")
which is also left exact and thus R’ can be used to obtain a 09— functor. Surprisingly,
however, these two are more related than they might appear.

Theorem 6.1. If ¢ : (X,Ox) — (Y, Oy), with underlying continous map ¢ : X — Y. Let
A € Ob Mod(X) and define an Oy module H}W as sheafification of the presheaf that
mapsV — H'(y~1(V),A). Then, R'¢, A= H",

But computing the cohomology groups using injective resolutions is very difficult and is
rarely done in practice. An easier alternative, is to use what are called flabby sheaves
which are over abelian groups. These sheaves are a lesser restricted version of injective
sheaves (i.e. all injective sheaves are flabby) and the interesting result is that moving to
the abelian group by forgetting the Ox module doesn’t change the cohomology groups.
Let’s define these sheaves now ( from [9, Tag 09SV]).

Definition 6.1. Let X be a topological space. We say a presheaf of sets F is flasque or
flabby if for every U C V open in X the restriction map F (V) — F(U) is surjective.

In fact, a very nice categorical definition just like we had for injective sheaves by defining
E-injective sheaves that is they satisfy the lifting condition for a particular set of monomor-
phisms, E. If E is taken be entire set of monos the definition is that of an injective object.
But using the Yoneda lemma one can prove that flasque sheaves can indeed be seen
as E-injectives, where FE consists of the inclusion maps Ox [, — Ox|y, for all pairs of
opens U C V. The proof is neatly given in [6] and is reproduced below.

Proof. Let Ox [y be the sheaf of modules with Ox [/(V) = Ox (W) if W C U and 0 oth-
erwise. This is the free O x-module on the Yoneda sheaf of sets, defined by y(U)(W) =1
if W C U and () otherwise. By the Yoneda lemma, Mod(X)[y(U), F] = FU. For F a sheaf
of modules, maps y(U) — |F'| (where |F| is the underlying sheaf of sets of F') correspond
to module maps Ox [; — F; so elements of F'(U) correspond to such maps, and restric-
tion F(V) — F(U) corresponds to composition with the inclusion map Ox[; — Ox|y.
So this restriction map is surjective exactly if F' is injective w.r.t. that inclusion map; and
F is flasque exacily if it's injective w.r.t. the set of all such inclusions. O

dy da ds

Theorem 6.2. If 0 F’
and F' is flasque, the following hold,

F

F” 0 is an exact sequence of sheaves
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1. For each open U of X, the sequence
0 -1 Py B FU) B F(U) —— 0 s exact.

2. If F is flasque, then so is F"

Since, most of the books leave it as an exercise (including Hartshorne, Tennison,) , we
will present the complete proof here. This is referenced from [7]

Proof. Since F is already left-exact proving that F(U) — F”(U) is surjective suffices. So,
let’s take a section s of F”(U) and try to construct its preimage. As ds is epi we get that,
for any open cover {V;} of U 3t; € F(V;) such that dsy (t;) = sly,.

Now the goal is to somehow glue these t;’s together. As, restrictions must agree for a

sheaf, dgvimvj (ti — tj) = vai rVJWVJ — vaj rVJWVJ = 0. Therefore, (ti — tj> erﬂVj S Ker(dg)
and by exactness it lies in Im(dz) i.e. 3 a;j € F'(V;NV5) such that da(aij) = (ti—t;) lv,qv;,-

Since, F' is flabby, we have that F'(V;) — F'(V; N'Vj) is surjective and we this get b; € V;
as the preimage of a;;. Define t'(i) = t;,t; = t; + d2(b;). Since, d3 o dy = 0, these t’ still
map to the same s but by naturality of the diagram,

dov.

F'(V;)(b5) : F(V2)

! |

dav;nv;

FI(V;nVi)(aij) —— F(VinVa)((ti —tj)lvay,)

We get that ((; — t;)[v,ny,) = 0. Therefore, by the sheaf property we can glue up these
t; into an element t which is the preimage. For a non finite cover, Zorn’s lemma has to be
used and for this we ask the reader to consult [7] O

7 Interesting applications

This section will be very vague as the examples we try to present require more jargon
and machinery to be made precise but we nevertheless felt it would be informative. Let
us first motivate the idea of a quasicoherent (and coherent) sheaf which is a very central
concept in algebraic geometry.

7.1 (Quasi)coherent Sheaves

Let S be a graded ring (say, k[xo, - - ,2z,] where k is a field) and let M be an S-module.
We can create a sheaf on a scheme (a projective scheme Proj S is considered ) out of M
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by constructing the stalks as the localizations at a point p where p is a prime ideal (recall
that points in a scheme are prime ideals) i.e. M,). Such an M is quasicoherent and if
S is noetherian and M is finitely generated, it is coherent. See Propostion 5.11 in [5] ,
There are quite a few ways of defining a quasicoherent sheaf (see [2] ) and one of them
is that it is locally equal to the cokernel of a morphism between freely generated Ox (U)
modules i.e.

oL (U) SN 0%(U) —— Q(U) = Cokernel(f) ltis coherent if the two modules are

finitely generated. See [2] for more details It is to be noted however that as one has to be
careful while defining coherent sheaves as the requirement in general (non Noetherian
cases) is more than just finite presentability, read section 13.6.6, Page 388 in [11] for a
discussion on this.

7.2 Vanishing Theorems

These theorem give us an “application" by saying that we can find out the dimension of a
variety by computing the cohomology groups.

Theorem 7.1 (Grothendieck). If X is a noetherian topological space of dimension n, then
HY(X,F)=0 Yi>n and any sheaf of abelian groups F.

Theorem 7.2 (Serre). Let X be a noetherian scheme. Then X is affine if and only if for
every quasi-coherent sheaf F on X, we have H*(X,F) =0 Vi > 0.

7.3  Generalizing Euler Characteristic - Algebraic geometrist’s way

The classical Euler characteristic y = V — E + F', has many generalisations ( [1] con-
tains a list). For any coherent sheaf F on a proper scheme X, one defines its Euler
characteristic to be :

X(F) =D (=1)'dimH" (X, F)
In this case, the dimensions are all finite by Grothendieck’s finiteness theorem. This is
an instance of the Euler characteristic of a chain complex, where the chain complex is a
finite resolution of F by acyclic sheaves.

7.4 Math N Complexity theory - Sheaf Cohomology is # P- hard

This is a very interesting work [3] which reduces the problem of counting the number
of satisfiable assignments of a 3- CNF boolean formula ¢ which is the canonical #P
complete problem, #SAT, to computing the dimension of a cohomology group (Note that
Cech cohomolgy is used). This is done by constructing a coherent sheaf on a projective
space as a graded matrix of polynomials defined by the clauses in ¢ for example z; Vv
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2oV 23 define (1 — z1)x223 and showing that the degree of the variety define by this set of
polynomials give the number of solutions as well as half the dimension of the cohomology
group.
dim H* (PEH 1) + 1

2

where I is the sheaf of of regular functions on P}** that vanish on the variety mentioned
above.

#satisfying assingments =
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