
An Elementary Route to
Grassmannians

Tushant Mittal

MATS654

Project Guide : Prof. Kapil Hari Paranjape

Indian Institute of Science Education and Research, Mohali

Indian Academy of Sciences



Certificate

This is to certify that Tushant Mittal (MATS654) has undergone training at Indian Institute of Science

Education and Research for a period of 8 weeks from 17th May to 21st July, 2016, under my guidance.

His performance has been satisfactory so as to fulfill all the requirements for successful completion

of the program. This project report titled "An Elementary Route to Grassmannians " is a bona fide

testimony of the work carried out by him .

Prof. Kapil Hari Paranjape

Department of Mathematics

Indian Institute of Science Education and Research, Mohali



Acknowledgement

I would like to first of all thank the Indian Academy of Sciences for organizing such a wonderful

Summer Research Fellowship Program and providing young Indian students an opportunity to work

with a pool of great scientists at the most prestigious institutes of the country.

I am very grateful to my project guide Prof. Kapil Hari Paranjape for agreeing to mentor me and for

pateiently bearing with me and my incessant pestering. The weekly meetings I have had with him

have taught me a lot about the interconnections of different areas of mathematics and have in

general.

I would also like to thank Indian Institute of Science Education and Research, Mohali for hosting me

and providing me with a comfortable stay.

Many thanks to the wonderful Mathematics StackExchange community for its enlightening

discussions which supplemented my reading material and greatly helped in clearing my doubts.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 My journey 5

1.2 Abstract 5

2 Hyperboloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Locus of lines intersecting 3 skew lines 6

2.2 All the lines on a hyperboloid 8

3 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Space of all lines in Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Lines in R2,P2 13

4.2 Lines in R3 13

4.3 Lines in P3 14

4.4 Lines in Pn 17

5 Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



1. Introduction

1.1 My journey

Algebraic Geometry rests on the foundation of Commutative Algebra and I started the project by

grasping its key ideas.Since the field of Algebraic Geometry is very diverse, it was confusing to

decide what to study and I tried to dabble in a few of them. I read about Gröbner Basis which is

the main object of interest in Computational Algebraic Geometry approach and very useful tool

in algorithm design. I read about unification of conics which motivated me to look up Projective

Geometry. The question of existence of a rational parametrisation of a curve seemed interesting and

I worked it out for a circle but did not follow it up and would like to do it in the future. Next in

line was the group law on cubics which is a fascinating topic and serves as a great introduction to

the theory of elliptic curves. Reading up the general Bezout’s Theorem (I read up one easier case)

and Reimann-Roch would be one my next goals so as to complete the proof of associativity of the

addition on cubics. I was then introduced to the problem of Schläfli’s Double Six which comes under

the branch of Enumerative Algebraic Geometryand I finally learnt about Grassmanians.

1.2 Abstract

We are all very familiar with the idea of representing geometric entities as solutions of a set of

polynomial equation.Thus we have equations defining a line,circle etc...But what about the set of all

lines satisfying some given property or set of all planes? Can we write down equations for them

? This is the central theme of the report.We first explore an example problem and then move on

slowly to prove that the Grassmannian is a variety.The proof given is very elementary and a reader

with a knowledge of basic linear algebra should be able to follow it.This is a departure from the

standard proofs found in most of the texts which uses exterior algebra which although makes it neat

requires some prior exposure which limits its accessibility.Theory that I have read from textbooks is

not replicated here to avoid unnecessary repetition and only the parts that I have worked out on my

own have been presented.



2. Hyperboloids

2.1 Locus of lines intersecting 3 skew lines

Let L1,L2,L3 be 3 mutually skew lines. The goal is to find the set of lines which intersect all 3 of

them.Without loss of generality we can assume,

L1 = (x,0,0)

L2 = (y,my,k),k 6= 0

L3 = (a+λv1,b+λv2,c+λv3)

We take the third line to be a general one with the conditions that,

b
c
6= v1

v2

(k− c) 6= v3(am−b)

Now let L be a line that intersects all the 3 lines.

Say it intersects L1 at (x0,0,0) and L2 at (y0,my0,k)

⇒ L = (x0 + t(y0− x0), tmy0, tk)

Since, L intersects L3, ∃t,λ such that,

(a+λv1,b+λv2,c+λv3) = (x0 + t(y0− x0), tmy0, tk)

Solving this for y0 after eliminating t and λ , we get

y0 =
bkv1−akv2− ((c− k)v2−bv3)x0

cmv1 +mv3x0− cv2− (am−b)v3
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From the line equation we can deduce the following relations,

x0 =
kmx− ky
mk−mz

y0 =
ky
mz

Replacing these in the solution for y0 we get a 2 degree curve which contains all the lines which

intersect the 3 lines.Let us take an example (the “general” case just looks uglier without having any

extra generality ).

Take k = m = b = v3 = 1,a = c = v1 = v2 = 0. We get,

x0 =
x− y
1− z

,y0 =
y
z

&y0 =
x0

1+ x0
= 1− 1

1+ x0

⇒ y
z
= 1− 1

1+ x−y
1−z

⇒ 1
1− y

z
= 1+

x− y
1− z

The final equation is,

y(1− z) = (x− y)(z− y)

This is the equation of a hyperboloid and it looks like this [Dev16],

Figure 2.1: y(1− z) = (x− y)(z− y)
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One interesting thing to note is that the 3 skew lines also lie on this hyperboloid. This shows that the

hyperboloid contains not just the lines that intersect them but also some other lines and this leads us

to ask what these other lines are.

2.2 All the lines on a hyperboloid

Let x2 + y2 = 1+ z2 be the equation of a hyperboloid.

Take any point P = (x0,y0,z0) on it.

Theorem 1. There exists 2 distinct lines passing through P

Proof. Let L pass through Q = (a,b,c) on the hyperbola.

If L = (x0 + t(a− x0),y0 + t(b− y0),c− tz0) lies on the hyperbola,

(x0 + t(a− x0))
2 +(y0 + t(b− y0))

2 = 1+(c− tz0)
2 ∀ t ∈ R

⇒ (t2− t)(ax0 +by0− cz0−1) = 0

ax0 +by0− cz0 = 1

This is the equation of a plane. Therefore Q lies on the points of intersection of the plane and the

hyperboloid. Since,the plane equation is linear eliminating one of the variables and substituting it in

the hyperboloid equation will give us the equation of a conic passing through P and Q such that every

point on the line through PQ lies on the hyperboloid. But,every point on the line PQ will also satisfy

the conic and hence the conic contains a line. Since,the only conic that does so is a pair of straight

lines, at most 2 lines pass through every point. We now only need to prove that no degenerate case

occur i.e. pair of equal line.

• Case 1 [z0 = x0y0 = 0]

Let,P = (1,0,0).Therefore,

⇒ a = 1,b2− c2 = 0

So, we get a pair of straight lines namely,(1,t,t) and (1,t,-t).

• Case 2[z0 = 0,x0y0 6= 0]

ax0 +by0 = 1

⇒ a =
1−by0

x0
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Substituting in the hyperboloid equation,

1−by0

x0

2
+b2 = 1+ c2

(1−by0)
2 + x2

0b2 = x2
0 + x2

0c2

b2− x2
0c2−2y0b+ y2

0 = 0

(b− y0)
2− (x0c)2 = 0

So we once again get 2 sets of lines.

• Case 3 [z0 6= 0]

Let L = (a+ tv1,b+ tv2,z0) pass through P.

⇒ (a+ tv1)
2 +(b+ tv2)

2 = 1+ z2
0 ∀ t ∈ R

⇒ v2
1 + v2

2 = 0

Thus, any line through it cannot be parallel to the XY-plane and hence intersects it at say

(a,b,0)

⇒ ax0 +by0 = 1

Since,(a,b,0) lies on both the unit circle in the XY-plane and the line defined by xx0+y0−1 =

0,z = 0 , there can be at most 2 such points.

Perpendicular distance of the line xx0 + yy0− 1 = 0,z = 0 from (0,0,0) is 1
1+z2

0
< 1 There-

fore,exactly 2 such points (and hence 2 lines through P) exist.

�

Theorem 2. Let P1 and P2 be 2 distinct points.Let L1,L2 and L3,L4 be the 2 pair of lines through

P1 and P2 respectively. Then each of L3,L4 can be obtained by rotating L1,L2 by some angle (not

necessarily same) about the z-axis.

Proof. Let L be a line through P=((1+z2
0)

1
2 cos(α),(1+z2

0)
1
2 sin(α),z0) and Q=(cos(β ),sin(β ),0)

The necessary and sufficient condition for L to lie on the hyperboloid is

(1+ z2
0)

1
2 (cos(α)cos(β )+ sin(α)sin(β )) = 1

(1+ z2
0)

1
2 cos(α−β ) = 1

If L is rotated by an angle θ about the z-axis.,the points P and Q are transformed to

P = ((1+ z2
0)

1
2 cos(α +θ),(1+ z2

0)
1
2 sin(α +θ),z0)

Q = (cos(β +θ),sin(β +θ),0)
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And the equation is still satisfied.

Let Q be a point on line L1 such that z-coordinate of Q and P2 is same. Then Q (along with

L1) can be rotated by some angle(say,θ ) about the z-axis to coincide with P2. Now 3 lines

pass through P2,L3,L4 and the rotated L1. But we have already proved that exactly 2 lines

pass through a point. Thus, one of L3,L4 is equal to the rotated L1 . Also lines which can be

transformed into one another by rotation are said to be in the same family. Thus, there are 2

families of lines on the hyperboloid.

�

Theorem 3. Lines of different families are coplanar and same family are skew.

• Proof. Let P1 and P2 be 2 distinct points.Let L1,L2 and L3,L4 be the 2 pair of lines through P1 and

P2 respectively. Let L1 and L3 belong to the same family.

Say that L4 intersects the plane z = 0 at (a,b,0) and L1 at (x,y,0).

L4 = (a+ tw1,b+ tw2, tw3)

L1 = (x+ tv1,y+ tv2, tv3)

As,L1 lies in the hyperboloid.

(x+ tv1)
2 +(y+ tv2)

2 = 1+(tv3)
2 ∀ t ∈ R

⇒ t2(v2
1 + v2

2− v2
3)+2t(xv1 + yv2) = 0

⇒ v2
1 + v2

2− v2
3 = 0,xv1 + yv2 = 0

Assuming y 6= 0 ,

(v1,v2,v3) = (v1,
−xv1

y
,
±v1

y
)

Similarly,

(w1,w2,w3) = (w1,
−aw1

b
,
±w1

b
)

Since,L1 and L4 belong to different family, it can be checked that the vectors must have opposite

signs in the z-component.

Now, L1 and L4 are coplanar iff

D =

∣∣∣∣∣∣∣
w1 w2 w3

a− x b− y 0

v1 v2 v3

∣∣∣∣∣∣∣= 0

D = (a− x)(w3v2−w2v3)+(b− y)(w1v3−w3v1)
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Substituting the values for vis and wis,

D = (a− x)(
−w1

b
−xv1

y
− −aw1

b
v1

y
)+(b− y)(w1

v1

y
)− −w1

b
v1)

D =
v1w1

by
((a− x)(a+ x)+(b− y)(b+ y))

D =
v1w1

by
(a2− x2 +b2− y2) = 0

Therefore,lines of different families are coplanar.

Now consider L1 and L3, L1 and L3 don’t intersect because if not, then their point of intersection P

and its rotated point P’ should lie on L1 but the line passing through PP’ is parallel to z-axis.

IfL1 ‖ L3,then,certainly L1 intersects with L4 as they are coplanar and L3 ∦ L4. Therefore,L1 lies in

the plane through L3 and L4.But this is impossible as the plane intersects the hyperboloid in exactly

2 lines. Hence,L1 and L3 are skew.

�

This gives us a correspondence between, {lines that intersect 3 skew lines} {Points on a quadric}
They are not equal in the Affine space as there exist points on the hyperboloid which gives lines that

are parallel. If we however see things in the Projective space,we get a one-to-one correspondence as

parallel lines meet at infinity. This provides us a motivation to study things in the projective space as

results get tied up. Also,we have found a correspondence between the space of lines and a projective

variety. The notion of varieties is a fundamental one in Algebraic geometry and it is a very useful to

be able to able to view geometric objects as a variety in some space.This allows us to use all the

developed algebraic geometry machinery to study them and gain a better insight.Let us first review

some basic definitions and results that we will need before proceeding further.



3. Basic definitions

Definition 3.0.1 An affine variety is the locus where a collection of polynomial equations is

satisfied, i.e., given F = { f j} j∈J ⊂ k[x1, ...,xn] we define

V (F) = {a ∈ An(k)| f j(a) = 0 ∀ j ∈ J} ⊂ An(k)

R Note that some texts define what as algebraic set what we have defined here as variety and use
the term variety for an irreducible algebraic set.

Definition 3.0.2 The algebro-geometric closure of a subset S⊂ An(k) is defined

S̄ = {a ∈ An(k)| f (a) = 0 ∀ f ∈ I(S)}=V (I(S))

A subset S⊂ An(k) is closed if S = S̄; U ⊂ An(k) is open if its complement An(k)\U is closed

in An(k).

Definition 3.0.3 The projective space associated with a finite dimensional vector space V is

defined by

P(V ) :=V \{0}/∼

where the equivalence relation is given by

u∼ v⇒∃λ ∈ k∗such that u = λv

P(An+1
k ) is denoted by Pn

k Also, The dimension of P(V ) is defined by dimP(V ) := dimV −1.

Definition 3.0.4 A projective variety is a subset V ⊂ Pn
k such that there is a set of homogeneous

polynomials T ⊂ k[x0, ...,xn] with

V = {P ∈ Pn
k | f (P) = 0 ∀ f ∈ T}



4. Space of all lines in Pn

On the face of it, the space of all lines doesn’t appear to be a variety. First let us look at some specific

examples to get a better understanding and then build up on it to the general version.

4.1 Lines in R2,P2

The general equation of a line in the X-Y plane is

ax+by+ c = 0

With the condition that a,b 6= (0,0). Also line defined by the 3-tuple (a,b,c) is same as the one defined

by(λa,λb,λc) This hints towards P2. So, let the mapping, φ : Lines in R2 −→ P2 φ(ax+by+ c =

0) = (a : b : c) It is easy to see that φ is injective but not surjective as the point (0:0:1) in P2 has no

pre-image. Again this can be remedied by working in P3 as then this would have a pre-image that is

known as the line at infinity. So, { lines in P2} ∼= P2

4.2 Lines in R3

To define a line in R3 we need either 2 points or 1 point and a direction vector.But there is no unique

representation as any point on the line and any scalar multiple of the direction vector gives us the

same line. We can deal with scalar multiples by looking at it in the projective space as we have done

above but handling the equivalence due to the point is trickier. The idea here is to eliminate the point

and represent the line by 2 directions so that the only equivalence that remains is of scalar multiples

which is easily taken care of.

So, let the line be defined by the point p and vector~v 6=~0.Take ~p as the position vector and define,

~m = ~p×~v

Note that if the line passes through the origin,then m is 0. We can verify that this is invariant with
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respect to choice the point.

~m′−~m = (~p′×~v)− (~p×~v)
~m′−~m = (~p′−~p)×~v

~m = ~m′⇔ ~p′ = ~p+λ~v

Thus the line can be represented by (~v,~m).These are known as the Plücker coordinates 1 of the line

and ’~m’ is also called the moment of the line. Since~m and~v are vectors they are defined uniquely up

to scalar multiplication. Hence the map ,

(~v,~m)→ (v0 : v1 : v2 : m0 : m1 : m2)⊂ P5

Also, ~m.~v = 0. So, the variety we are looking for is V = {(v0 : v1 : v2 : m0 : m1 : m2) | ∑
2
i=0 mivi =

0} ⊂ P5. To define the inverse for any point in the variety such that (v0 : v1 : v2) 6= (0 : 0 : 0),define

~p =
(~v×~m)

‖v2‖

~p×~v = (
~v×~m
‖v2‖

)×~v

~p×~v = ‖v
2‖~m− (~v.~m)~v
‖v2‖

~p×~v = ~m

Therefore we get back a unique line. Thus, the space of lines in R3 is embedded in the variety

but not equal to it. Hence, {Space of lines in R3} ∼=V \{(0 : 0 : 0 : m1 : m2 : m3)} So the space of

lines is isomorphic not to a variety but to a quasi-projective variety whose closure is V. The lines

corresponding to the case when (v0 : v1 : v2) = (0 : 0 : 0) can be found then in the projective space

and let us see how.

4.3 Lines in P3

In P3,the line is not represented by direction vectors and the also the idea of cross product breaks

down. So, it seems that we may have to start all over again to define the Plücker coordinates of the

line . But how do we get started?

Lines in P3 through the points (x0 : y0 : z0 : t0),(x1 : y1 : z1 : t1) are represented as,

{(ux0 + vx1 : uy0 + vy1 : uz0 + vz1 : uz0 + vz1)|(u,v) ∈ P1}

1Named after the German mathematician and physicist Julius Plücker (1801 – 1868)
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Let us first calculate the Plücker coordinates of the line through (x0,y0,z0) , (x1,y1,z1) in R3.

~v = (x1− x0,y1− y0,z1− z0)

~m = (x0,y0,z0)×~v

~m = (y0z1− z0y1,z0x1− x0z1,x0y1− y0x1)

Therefore, the Plücker coordinates are (x1−x0 : y1−y0 : z1−z0 : y0z1−z0y1 : z0x1−x0z1 : x0y1−y0x1)

From this,we get the idea that for a line in P3 the Plücker coordinates could be defined as

(w0x1− x0w1 : w0y1− y0w1 : w0z1− z0w1 : y0z1− z0y1 : z0x1− x0z1 : x0y1− y0x1)

These coordinates can also be viewed as the determinants of the 2×2 submatrix of the matrix[
x0 y0 z0 w0

x1 y1 z1 w1

]

Firstly , it can be easily verified that the map is homogeneous and for any 2 points on the line the

corresponding coordinates are same.Thus,the map is well-defined. Also the map lies in V = {(v0 :

v1 : v2 : m0 : m1 : m2) | ∑
2
i=0 mivi = 0} ⊂ P5

Theorem 4. The mapping defined above is injective.

Proof. For any line we can choose u,v such that w1 = 0.

So without loss of generality,we will assume that the w-coordinate of the second point is 0.

Now let 2 pair of points (P0,P1) = ((x0 : y0 : z0 : t0),(x1 : y1 : z1 : 0)) and

(Q0,Q1) = ((a0 : b0 : c0 : d0),(a1 : b1 : c1 : 0)) define the same line.

(w0x1 : w0y1 : w0z1 : y0z1− z0y1 : z0x1− x0z1 : x0y1− y0x1) =

(d0a1 : d0b1 : d0c1 : b0c1− c0b1 : c0a1−a0c1 : a0b1−b0a1)

We can make the coordinates exactly equal by scaling the first point by a factor.

Case 1 [w0 = 0]

This implies that d0 = 0 since (a1,b1,c1) 6= (0,0,0) Now we can interpret each 3-tuple (the first 3

coordinates) (x0,y0,z0) as a position vector in R3 So, the condition thus becomes,

~P0× ~P1 = ~Q0× ~Q1

That is , the normal to the planes defined by the vectors ~P0, ~P1 is same as the one defined by ~Q0, ~Q1.

Also both contain the origin (0,0,0).Thus , the 4 vectors are coplanar and hence each ~Qi can be

obtained by a linear combination of ~P0, ~P1. Thus, all 4 points lie on the same line.
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Case 2 [w0 6= 0]

w0x1 = d0a1⇒
d0

w0
=

x1

a1

Similarly from the other 2 equations we get,

d0

w0
=

y1

b1
=

z1

c1

Hence,the points P1 and Q1 are same. Also as d0 and w0 are non-zero we can divide by them

to make the last coordinate 1. Now we have, P′0 = (x : y : z : 1) P1 = Q1 = (a1 : b1 : c1 : 0) and

Q′0 = (a : b : c : 1) We have to now prove that Q′0 lies on line defined by P′0,P1 Again as before , form

vectors out of the first 3 coordinates. Note that if ~P′0 =~0 then ~P′0 =~0 and hence the proof is complete.

Else, we have 3 non-zero vectors such that

~P′0× ~P1 = ~Q′0× ~P1

(~Q′0− ~P′0)× ~P1 = 0

(~Q′0− ~P′0) = k~P1

Hence, ~Q′0 =
~P′0+k~P1 Since, last coordinate of P′0 =Q′0 and P1 = 0 , the Q′0 is just a linear combination

of P′0 and P1 and hence lies on the line.

Thus , the mapping is injective. �

The reader may feel that the above given proof is unnecessarily long and a more concise proof is

possible.This is indeed the case and such a proof will be given for the general case.This proof has

been given here as I feel it gives a more intuitive picture.

Now let us try to find an inverse of the map.If we can show that there is well defined inverse for all

elements in the variety then it proves that the map is bijective. Let (a1 : a2 : a3 : b1 : b2 : b3) be a

point in V. To define the inverse we again divide it into 2 cases.

Case 1 [(a1 : a2 : a3) = (0 : 0 : 0)]

Then, at least one of the bi 6= 0 say b1.

Define inverse as P0 = (−b2 : b1 : 0 : 0),P1 = (−b3
b1

: 0 : 1 : 0). It can be checked that taking their

image we get the point (0 : 0 : 0 : b1 : b2 : b3).

Case 2 [(a1 : a2 : a3) = (0 : 0 : 0)]

Then as we have seen previously ,we can find a inverse line in R3 . Take any 2 points on it define the

inverse as (P0,P1) = ((x0 : y0 : z0 : 1),(x1 : y1 : z1 : 1)) .

Thus we have found an inverse well defined on the entire variety. Hence, the map is a bijection. We

can also see that the lines whose inverse was "missing“ in the case of the real space were those lines
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whose last coordinate was always 0.These lines lie completely out of the real space and are the lines

at infinity.

Thus, we can see how we get a more complete mapping in the projective case and gives us enough

motivation to work in the projective space to avoid dealing with cases.

4.4 Lines in Pn

We can very easily extend the above used idea of Plücker coordinates to n dimensions but let us first

introduce a much clearer notation. Let (a11 : a12 : · · · : a1n) and (a21 : a22 : · · · : a2n) be 2 different

points defining a line L in Pn [
a11 a12 · · · a1n

a21 a22 · · · a2n

]
The Plücker coordinates are defined by

pi j =

∣∣∣∣∣ a1i a1 j

a2i a2 j

∣∣∣∣∣= a1ia2 j−a1 ja2i

Thus, the map φ(L) sits inside PN ,N =
(n+1

2

)
−1. It is easy to see that the map is well- defined.Let

us show that the map is injective.

Theorem 5. φ is injective.

Proof. Let L1,L2 be 2 lines that map to the same coordinates.Let P be the point of intersection

(Remember, any two lines meet in projective space ). Let Q1,Q2 be any 2 point apart from P on

L1,L2 respectively.Then finding the coordinates with respect to these and equating,

PiQ1 j−PjQ1i = PiQ2 j−PjQ2i

Pi(Q1 j−Q2 j) = Pj(Q1i−Q2i) ∀ i, j

Now at least one of the Pis are non-zero say P0.

Q1 j−Q2 j = Pj

(
Q10−Q20

P0

)
∀ j

⇒ Q1 j = Q2 j + kPj

Thus Q1 lies on L2 which is a contradiction. �

It is no longer straightforward to write the equations for the image variety as we longer have the dot

product intuition. However, we can make our task easier by looking at the image in each of the open
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affine cover of PN . So let Ui0 j0 be the open cover defined by pi0 j0 6= 0.∣∣∣∣∣ a1i0 a1 j0

a2i0 a2 j0

∣∣∣∣∣ 6= 0

Thus this matrix has an inverse.This can be used to do a Gaussian elimination which is basically a

linear combination of the rows.Thus this does not affect the line but only changes the 2 representative

points. [
a′11 a′12 · · · 1 · · · 0 a′1n

a′21 a′22 · · · 0 · · · 1 a′2n

]
Using this we get the following relations,

⇒ pi0 j = a′2 j

⇒ pi j0 = a′1i

Hence ,

pi j =

{
pi j0 pi0 j− p j j0 pi0i (i, j) 6= (i0, j0)

1 (i, j) = (i0, j0)

These equations define an affine variety Vi j ⊂Ui j and it can be easily seen that for every set of values

of {a′1i,a′2 j} the pi j are uniquely determined.Therefore , Vi j ∼= A2n−2

Now Homogenizing the equation we get,

pi j pi0 j0 = pi j0 pi0 j− p j j0 pi0i

Now we check whether this relation holds if pi0 j0 = 0,

⇒

∣∣∣∣∣ a1i0 a1 j0

a2i0 a2 j0

∣∣∣∣∣= 0

pi j0 pi0 j = (a1ia2 j0−a2ia1 j0)(a2 ja1i0−a1 ja2i0)

p j j0 pi0i = (a1 ja2 j0−a2 ja1 j0)(a2ia1i0−a1ia2i0)

Atleast one of the a1i0 ,a1 j0 is non-zero (if not the relation is trivially satisfied),say a2 j0 . Now ,

substituting a1i0 by
a1 j0 a2i0

a2 j0
we get the relation. Hence, this relation is true for the entire image of φ .

Hence, this relation is a necessary condition for a point to lie in the image.

Taking the closure of these varieties in PN , we get a projective variety V defined by the ideal

J = ({pi j pkl = pil pk j− p jl pki})
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The inverse can be easily defined. Let p ∈V be given . Then at least one of them say pi0 j0 6= 0. First

divide the coordinates by pi0 j0 and then map,

a′1i = pi j0

a′2 j = pi0 j

Thus, it is also a sufficient condition. Hence, we shown that the image of φ is a projective variety.

Also, a question arises that if all the lines in Pn can be given the structure of a projective variety, then

can we do something similar with a general linear subspace of dimension k .



5. Grassmannian

The idea of Grassmannian1 is to view the finite dimensional subspaces of a vector space as a

projective variety. Thus, we have the following definition,

Theorem 6. The Grassmannian G(k,n) is defined as the set of all k-dimensional linear subspaces

of an n-dimensional vector space V ∼= Kn. Also written as G(k,V ) to signify lack of choice of basis.

Another alternate definition is G(k,n) as set of k-planes in Pn. Therefore, G(k−1,n−1) = G(k,n).

It is clear from the definition that G(1,n) = Pn and we have already seen G(2,3) = P2 and have

identified G(2,n) with a variety in P(
n
2)−1 .Define ,

N =

(
n
k

)
−1

We will now show a bijective correspondence of G(k,n) with a variety in PN .The proof is very

similar to the one for G(2,n)

First fix a basis for the vector space and then to a k-dimensional vector space spanned by the vectors

[v1,v2, ..,vk] associate a k×n matrix where ith row represents the coordinates of vi with respect to

our basis. 

a11 a12 · · · a1 j · · · a1n
...

...
...

...
...

...

ai1 ai2 · · · ai j · · · ain
...

...
...

...
...

...

ak1 ak2 · · · ak j · · · akn


Now this matrix is not unique to a subspace as left-multiplying it with an invertible k× k matrix

represents the same subspace as it corresponds to a basis change of the subspace. Note,however that

the basis of the vector space is not altered.

1Named after the German polymath Hermann Günther Grassmann(1809 – 1877)
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Let M j1 j2.. jk denote the k× k matrix obtained from the ji numbered columns and let p j1 j2.. jk denote

its determinant. Now the Plücker coordinates corresponding to the subspace are

{p j1 j2.. jk |1≤ j1 < j2 < ... jk ≤ n}

The coordinates are well-defined up to scalar if a different basis is chosen for the subspace the the

new matrix is obtained by left- multiplying with the transformation matrix T.Hence, the Plücker

coordinates get multiplied by a factor equal to det(T ) .Also, all the coordinates can’t be 0 as that

would imply that the rank of the matrix < k and hence that the basis are linearly dependent.

Theorem 7. The mapping from the subspace to the coordinates is injective.

Proof. Let [v1,v2, ..,vk] and [w1,w2, ..,wk] span 2 k-dimensional vector spaces V and W respec-

tively,such that their Plücker coordinates are the same.Let w∗ ∈W Now, from linear algebra we

know that w∗ ∈W iff

rank



w11 w12 · · · w1 j · · · w1n
...

...
...

...
...

...

wi1 wi2 · · · wi j · · · win
...

...
...

...
...

...

wk1 wk2 · · · wk j · · · wkn

w∗1 w∗2 · · · w∗j · · · w∗n


= k

This means that the determinant of all k+1×k+1 matrices are 0. Expanding these along w∗i we get

set of linear relations with the coordinates as the coefficients. But, the coordinates are same even if

we replace the wi j by vi j.Hence,

rank



v11 v12 · · · v1 j · · · v1n
...

...
...

...
...

...

vi1 vi2 · · · vi j · · · vin
...

...
...

...
...

...

vk1 vk2 · · · vk j · · · vkn

w∗1 w∗2 · · · w∗j · · · w∗n


= k

∴ w∗ ∈V

�

Now, like we did earlier, we try to find the equations that define the variety corresponding to the

image of the map by looking at its intersection with the affine covers over PN . So let the open sets

U j1.. jk be defined by p j1.. jk 6= 0. So let us look at U12...k just for the sake of notational simplicity.(Just

replacing 1,2, ..,k by j1, j2, .. jk in the entire argument will make it "general” ).
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As p1..k 6= 0 , the matrix M1..k has an inverse and this when multiplied to the coefficient matrix will

lead to a change of basis such that the matrix defined first k rows and columns becomes identity.
1 · · · 0 v′1k+1 · · · v′1n
...

. . .
...

...
...

...

0 · · · 1 v′kk+1 · · · v′kn


It can be clearly seen that,

p1..î j..k = v′i j j > k (5.1)

Note - î means absence of ith column

And as all p j1.. jk are polynomials in v′i j, we get a set of polynomial relations in the coordinates

and hence define an affine variety. We also see that the k(n− k) coordinates of the form p1..î j..k

uniquely determine all the other coordinates and hence this variety is isomorphic to Ak(n−k).Thus,

the Grassmannian’s dimension is k(n− k).

The equations that we get by the above method has polynomials of deg(k) and it is almost always

desirable to get equivalent set of equations with a lesser degree.In our case we can reduce the degree

to 2.Let us see how.

p j1 j2.. jk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

v1 j1 v1 j2 · · · v1 jr · · · v1 jk
...

...
...

...
...

...

vi j1 vi j2 · · · vi jr · · · vi jk
...

...
...

...
...

...

vk j1 vk j2 · · · vk jr · · · vk jk

∣∣∣∣∣∣∣∣∣∣∣∣∣
Expanding with respect to the first column (assuming j1 > k, else pick any other),

p j1 j2.. jk =
k

∑
t=1

(−1)t−1vt j1

∣∣∣∣∣∣∣∣∣∣∣∣∣

v1 j2 · · · v1 jr · · · v1 jk
...

...
...

...
...

vt̂ j2 · · · vt̂ jr · · · vt̂ jk
...

...
...

...
...

vk j2 · · · vk jr · · · vk jk

∣∣∣∣∣∣∣∣∣∣∣∣∣

p j1 j2.. jk =
k

∑
t=1

(−1)t−1vt j1

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 v1 j2 · · · v1 jr · · · v1 jk
...

...
...

...
...

...

1 vt j2 · · · vt jr · · · vt jk
...

...
...

...
...

...

0 vk j2 · · · vk jr · · · vk jk

∣∣∣∣∣∣∣∣∣∣∣∣∣
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⇒ p j1 j2.. jk =
k

∑
t=1

(−1)t−1vt j1 pt j2.. jk

⇒ p j1 j2.. jk =
k

∑
t=1

(−1)t−1 p12..t̂ j1,..k pt j2.. jk

Homogenizing,we obtain,

⇒ p j1 j2.. jk p12...k =
k

∑
t=1

(−1)t−1 p12..t̂ j1,..k pt j2.. jk

This equation also holds when p12...k = 0.

Proof. As p12...k = 0 , the columns are not linearly independent and hence a relation,

m

∑
i=1

λici = 0 ci ∈ {1,2...k}

The terms corresponding to t 6= ci are 0 as M12..t̂ j1,..k will contain all the cis and hence p12..t̂ j1,..k = 0

So the relation to prove becomes,

m

∑
i=1

(−1)ci−1 p12..ĉi j1,..k pci j2.. jk = 0

Also if j2, j3, .. jk are dependent then every term is 0 and hence it is trivial. So as they are independent

we extend them by a basis v( in the k-dim vector space ) .

Now decompose the column vector ci in terms of {v, j2, j3... jk},

ci = αi1v+
k

∑
r=2

αir jr

Using the linear relation between the ci we get,

m

∑
i=1

αi1λi = 0

Define ,

p∗= det(Mv j2 j3.. jk)

Hence,

pci j2.. jk = αi1 p∗

Also doing some elementary operations on the matrix we can convert all the M12..ĉi j1,..k to the form
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p12..ĉ1 j1,..k. Thus,

p12..ĉi j1,..k = (−1)ci−c1 λi

λ1
p12..ĉ1 j1..k

m

∑
i=1

(−1)ci−1 p12..ĉi j1,..k pci j2.. jk =
m

∑
i=1

(−1)c1+1 λi

λ1
p12..ĉ1 j1,..kαi1 p∗

= (−1)c1+1 p12..ĉ1 j1,..k p∗
λ1

m

∑
i=1

λiαi1

= 0

�

Hence the equations can be generalized to the form,

⇒ p j1 j2.. jk pc1c2...ck =
k

∑
t=1

(−1)t−1 pc1c2..ĉt j1,..k pct j2.. jk

And these are a set of necessary relation of degree 2 that every element should satisfy for it to lie in

the image. They are also sufficient as given a set of coordinates satisfying the above relations,we can

construct the image by setting , (Assuming pc1c2..ck = 1)

vi j = pc1..ĉi j..ck j > k

v j j = 1 j ≤ k

vi j = 0 j ≤ k i 6= j

Thus we have proved that there is bijection between the Grassmannian G(k,n) and a quadric in PN .
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