
Categorical Complexity

MTH666 : Project Report

Tushant Mittal
Indian Institute of Technology, Kanpur

tushant@iitk.ac.in

Contents

1 Introduction 2

1.1 Attempt at Unification . 2

2 Diagram Computation 3

2.1 A basic example . 4

2.2 Cost of Computation . 4

3 A Useful Theorem 6

4 Simulating ACC 7

4.1 Arithmetic Circuit Complexity . 7

4.2 ACC and R-Modules . 7

5 Image Functor and P vs NP 11

5.1 Semi Algebraic Sets . 11

5.1.1 Limit Complexity in SA . 12

1

Chapter 1

Introduction

The theory of computational complexity tries to classify problems based on their complexity

which is the difficulty of solving it using a certain computation model. There are variety of

models each of which arise naturally in different settings. For example, the turing machine

model is typically used for problems with finite representations but the real RAM model

is more suited in instances where operations involve exact real numbers. It must be noted,

that the computation models are a theoretical construct and might not correspond to real

life devices, like say, a quantum computation and DNA compution model.

Each model further tries to analyse the usage of some resource which it deems relevant.

For example, in the boolean model time and space are looked at, the cicuit model works

with the number of gates in the circuit whereas in the field of communication complexity

the total length of messages sent is what matters.

1.1 Attempt at Unification

These various models though have correlations amongst each other are largely studied in

isolation depending on the setting.

A recent paper by Basu, Isik [BI17] attempts to genralize the notion of complexity by

defining a new notion of categorical complexity. The claim is then that different models can

be recovered by working in appropriate categories.

This report is entirely based on this paper and presents the key results of the paper.

2

Chapter 2

Diagram Computation

Let us now define the categorical model of compuatation which essentialy looks at the the

number of steps required to construct a diagram in a category starting from a set of basic

morphisms and adding a limit (colimit) of subdiagrams at each step.

Definition 2.1 ((Co) Limit Computation). Let, C be a category, A ⊂ Mor(C). A limit

computation (respectively, a colimit computation) in C is a finite sequence of diagrams

(D0, ..., Ds), with Di : Ii → U(C), where:

1. D0 consists only of morphisms in A i.e. the basic morphisms

2. For each i = 1, · · · , s, Di is obtained from Di−1 by adding a limit or colimit cone of a

subdiagram. More precisely, there is a sub-diagram Di−1|Ji, where Ji ⊂ Ii, of Di−1 and

Li is its limit (resp. Ci is colimit) such that the difference between Di and Di−1 are

Li and the limit cone morphisms out of Li (resp. Ci and the colimit cocone morphisms

into Ci).

3. (Constructivity) If a limit Li = lim Di−1|Ji (resp., colimit Ci) produced in the ith step

of the computation is used again in the subdiagram Dj−1|Jj used at the jth step of the

computation, then Ji ⊂ Jj , i.e. the subdiagram that produced Li (resp.,Ci) must be a

sub-diagram of Dj−1|Jj

♦

Definition 2.2. A mixed computation is similar to the above sonstructuction but Di is ob-

tained from Di−1 by adding either the limit or the colimit of a subdiagram. Moreover, the

constructivity condition is dropped. ♦

3

The computation (D0, · · · , Ds) is said to compute a diagram D, if D is isomorphic to

subdiagram of Ds. In particular, an object in C is computed by (D0, · · · , Ds) if an object

isomorphic to it appears in Ds.

2.1 A basic example

Let us look at a few concrete examples to understand how the compuation works and to see

how the given conditions play a role. We construct the function f : {0, 1, 2} → {0, 1, 2} such

that f(0) = 0 = f(1), f(2) = 1 using colimits.

2.2 Cost of Computation

Let c0 : A→ N be a function that assigns a cost to eacho of the basic morphisms.

Definition 2.3 (Cost Computation). The cost of the computation (D0, ..., Ds) is the the

number of steps plus the cost of the initial diagram D0 consisting of basic morphisms, that

is:

c(D0, ..., Ds) = s+
∑

f∈MorI0

c0(D0(f))

♦

The cost will be taken to be 1 unless specified. Using this we define the limit/ colimit/

mixed complexity of a diagram D.

Definition 2.4. The limit (resp. colimit, resp. mixed) complexity C(D) = CC,A(D), short

forClimC,A,c(D)(resp., CcolimC,A,c (D), resp., CmixedC,A,c (D)) , of a diagram D in a category C is the cost

4

of the limit (resp., colimit, resp. mixed) computation using basic morphisms A,that has the

smallest cost among all such computations that compute D. ♦

Example Let’s calculate the colimit complexity of constructing a finite set starting from

just id1.

Lemma 2.5. In the category Set, let

A = {id : {1} → {1}}, c0(id) = 1

. Then, for any set finite set S,

ccolimSet,A(S) = |S|+ 1

Proof. Since finite sets of equal size are isomorphic, a computation will compute S if and only

if it computes any set of cardinality equal to |S|. As in the earlier example, starting with |S|
copies of {1} and taking their colimit, we get a set of cardinality |S|. So, the complexity is

bounded from above by |S| + 1. To see that this is the most efficient way of producing a set

with |S| elements, we use a theorem that is proven in the next chapter, which states that if

we only care about building a single object, then a colimit computation can be replaced by

a single colimit on D0 consisting of basic morphisms. Since the identity on {1} is the only

basic morphism in this case, taking the colimit of |S| copies of {1} is the most efficient way

to obtain an object isomorphic to S.

5

Chapter 3

A Useful Theorem

The following lemma, shows that to construct an object, it suffices to just consider the basic

morphisms and that the intermediate steps in a limit or colimit computation are unnecessary.

The key here is the constructivity assumption.

Lemma 3.1. Assume C has finite products (resp., coproducts). An object produced in a limit

computation (resp., colimit computation) is a limit (resp., colimit) of a diagram consisting

only of basic morphisms

Proof. Let (D0, · · · , Ds) be a limit computation and let X be an object appearing in Ds.

The point of the statement is that constructivity ensures that the information that would

be added in intermediate limits is also included in the final limit that would produce X.

More precisely, let Li = lim Di−1|Ji be the limit added to the diagram at the ith step. Let

J ′i = I0 ∪ Ji. So we have that Di−1|J ′i is the portion of the sub-diagram of Di−1|J ′i which

is also in D0. We claim that Li ∼= Di−1|J ′i . Indeed, the universal property of limits and

constructivity imply that cones from any object Z to Di−1|J ′i can be uniquely extended to

cones from Z to Di−1|J ′i , and therefore lim Di−1|J ′i satisfies the same universal property as

Li. The analogous proof holds for colimits.

6

Chapter 4

Simulating ACC

4.1 Arithmetic Circuit Complexity

An arithmetic circuit C over a field F and the set of variables x1, · · · , xn is a directed acyclic

graph as follows. Every node in it with indegree zero is called an input gate and is labeled

by either a variable xi or a field element. Every other gate is either a sum (+) or a product

(×) gate. A circuit has two complexity measures associated with it: size and depth. The

size of a circuit is the number of gates in it, and the depth of a circuit is the length of the

longest directed path in it. The arithmetic circuit complexity of a polynomial f is the least

size of a circuit computing it.

4.2 ACC and R-Modules

Define R to be the polynomial ring k[x1, · · · , xn]. We will look at the colimit computations in

R−Mod which is the category of modules over R with the basic of morphisms A containing:

R
xi−→ R i ∈ [1, n]

R
c−→ R c ∈ k

R
∆−→ R⊕R

R
i1,i2−−→ R⊕R

R⊕R +−→ R

R→ {0}

7

Theorem 4.1. If a polynomial f ∈ R is computed by a formula of size s, then the diagram

R
f−→ R is computed by a colimit computation in R-Mod with cost bounded by O(s).

Proof. Without loss of generality, we can assume that all sum and product gates have two

indegree 2 because such a restriction only increases the size by a polynomial factor. We will

build, for each formula C, a diagram DC whose colimit will contain R
pC−→ R where pC is the

output polynomial of C. This will be done inductively on the size of C. Each DC will be a

diagram of the form

whose colimit is R with the morphism from the R on the right to the colimit being idR

and the morphism from the R on the left to the colimit being defined by 1 → pC .If the

output pC of C is one of the variables xi let DC be the diagram R xi → R. If it just a

constant, then DC is R
c−→ R. If the top gate of C is a product gate with C ′ and C ′′ as the

left and right sub-circuits, then we set DC by chaining together DC′ and DC′′ :

The map from the left-most R to the colimit is the composition R
pC′−−→ R

pC′′−−→ R which

is R
pC′pC′′−−−−→ R. If the top gate of C is a sum gate with C ′ and C ′′ as the left and right

sub-circuits, then we define DC as

where the top and bottom rows are DC′ and DC′′ . The colimit of this diagram is again R

with the map from the left-most R to the colimit being pC′ + pC′ .

8

Now we prove the converse and show that the existence of a colimit computation in

R-Mod producing say about the complexity of f?

Theorem 4.2. If R
f−→ R is computed in a colimit computation with cost c in R-Mod, then

there is an arithmetic circuit of size poly(c) with inputs x1, · · · , xn that computes f

Proof. Consider a diagram D : I → R−Mod consisting only of the basic morphisms. Assume

that we have colim D = R∗. For each v ∈ ob(I), we have that D(v) is R,R⊕R or {0}. For

each v such that D(v) = R, let fv be the image of 1 under the morphism R
1→fv−−−→ R∗ from

D(v) to the colimit R. If D(v) = {0}, then we set fv = 0. If D(v) = R⊕R, then we set two

polynomials fv and fv′ so that the map R ⊕ R → R∗ to the colimit is given by (1, 0) → fv

and (1, 0) → fv′ . We will prove that each fv is computed by a polynomially sized circuit.

We are considering the fvs as unknowns in a system of equations. For each arrow in D, we

consider one or two R-linear equations. For an arrow D(v1) → D(v2) of the form given in

the left column, we add the equations in the right column:

R
xi−→ R fv1 − xifv2

R
c−→ R fv1 − cfv2

R
i1,i2−−→ R⊕R fv1 − fv2 or fv1 − fv′2

R
∆−→ R⊕R fv1 − fv2 − fv′2

R⊕R +−→ R fv1 − fv2 and fv1 − fv′2
R→ {0} fv1 = fv2 = 0

In this way, we obtain a homogeneous system R-linear equations; Af = 0, A ∈ Matn×s(R).

Tuples that satisfy this system of equations correspond to a cocones of the diagram D with

target R∗. Since the colimit of D is R∗, for any such cocone corresponding to fv1 , · · · , fvs), by

the universal propery there will be a map R
1→g−−→ R∗ making the diagram containing the new

cocone, the colimit cocone and the map R
1→g−−→ R commute. This implies that g divides each

fvj . Since the colimit is the initial cocone, we can find the tuple of polynomials corresponding

to the colimit cocone by taking (
fv1
h
, · · · , fvs

h
) where h = gcd(fv1 , · · · fvs). Thus, to compute

the map from every D(v) to R∗, it suffices to: (i) find a solution to the above system of

equations for D, and (ii) divide by h.

It can be easily seen that Gaussian elimination gives a poly time cicuit (using divisions)

to solve the system of equations.

But there are 2 issues to be resolved here. One, the solution obtained say, S = (p1
q1
, · · · , ps

qs
)

9

lies in k(x1, · · · , xn)s whereas we want one in k[x1, · · · , xn]s.

To do this, first use Kaltofens GCD algorithm [Kal88] to assume, without loss of generality

that each pi, qi is reduced. Then use Kaltofens Denominator Extractor [Kal88] to extract

the denominators qi from each fraction. The element
∏

i qiS ∈ k[x1, · · · , xn]s. Now divide∏
i qiS by the gcd of all of its entries to obtain (fv1 , · · · , fvs) ∈ k[x1, · · · , xn]s.

The other is that we need to implement these in a division-free circuit. This is made

possible due to a classical result by Strassen [Str73] which says that any cicuit of size O(s)

which uses division gates can be converted to one of size O(poly(s)) which has just addition

and multiplication gates.

This concludes the proof that for any diagram of basic morphisms with R∗ as a colimit,

every colimit cocone morphism from an object in D sends 1 to an fv which is computed by

a circuit of size polynomial in s.

We now prove the theorem. Let R1
1→f−−→ R∗ be a sub-diagram of a colimit computation

with initial step D0. By Lemma 3.1, there is a sub-diagram D′0 ⊂ D0 of basic morphisms

whose colimit is R1; and from the constructivity criteria there is a subdiagram D′0 ⊂ D′′0 ⊂ D0

whose colimit is R∗, with the induced map R1 → R∗ being a map that sends 1 → f . This

implies, combined with the first part of this proof applied to both D′0 and D′′0 , that f is the

quotient of two polynomials computed by polynomially sized circuits. Hence, by Strassen’s

method, f is computed by a circuit of cost polynomial in the size of D0.

10

Chapter 5

Image Functor and P vs NP

Definition 5.1. A complexity function on C is a function that takes (finite) diagrams of C

to N ∪ {∞} ♦

Definition 5.2. Let C,D be two categories with complexity functions, φ, ψ, and let F : C →
D be a functor. We define the complexity, cφ,ψ(F) : N→ N by

Cφ,ψ(F)(n) = sup{ψ(F (D)) | Iis a finite shape, D ∈ [I, C], φ(D) ≤ n}

♦

Lemma 5.3. Suppose that C is a category that has pull-backs and images. Then in C→,

letting MonC denote full subcategory of monomorphisms, and iC : MonC → C→ the inclusion

functor has a left-adjoint .

If C has pullbacks, we have discussed in class if C has images then as

The complexity of a functor F is basically the maximum complexity of the image of a

diagram of complexity at most n under F .

5.1 Semi Algebraic Sets

Definition 5.4. The basic (closed) semialgebraic set defined by polynomials f1, · · · , fn is

{ x ∈ Rm | fi(x) ≥ 0 ∀i ∈ [1, n] }

♦

11

Definition 5.5. A set generated by a finite sequence of unions, intersections and comple-

ments on basic semialgebraic sets is called a semialgebraic set. ♦

Let’s look at the specific category SA of the semi-algebraic sets. The category has as

its objects semi-algebraic sets and the morphisms are polynomial maps. That it is a valid

morphism is non-trivial and follows from the following celebrated theorem.

Theorem 5.6 (Tarski-Seidenberg). Let A be a semialgebraic subset of Rn+1 and π : Rn+1 →
Rn , the projection on the first n coordinates. Then π(A) is a semialgebraic subset of Rn.

Corollary 5.7. Let A be a semialgebraic subset of Rn and F : Rn → Rm. Then F (A) is a

semialgebraic.

Proof Sketch. Firstly, we can use induction to generalize the theorem to Rn+m → Rn. Now,

consider the graph of F {(a, F (a)) | a ∈ A} and then project it.

Now that we have established the category of semialgebraic sets let us look at the limit

complexity of the image functor of SA.

5.1.1 Limit Complexity in SA

Let the basic morphisms A consist of the following morphisms

R c−→ R c ∈ R

R2 +−→ R

R2 ×−→ R

[0,∞) ↪−→ R

R→ {0}

Theorem 5.8. CclimSA→,A
(imSA) is not polynomially bounded.

Proof. It is not difficult to see that the objects of SA that can be constructed using a

limit computation are exactly the basic closed semi-algebraic sets. On the other hand, it

is well known that the image under polynomial maps (for example, projections along some

coordinates) of a basic closed semi-algebraic set need not be a basic closed semi-algebraic

set. For example, consider the real variety V defined by

(X1 −X2
3)(X2 −X2

4) = 0

12

Denoting by π : R4 → R2 the projection to first 2 coordinates, π(V) = {(x1, x2) ∈ R2 | x1 ≥
0 ∨ x2 ≥ 0} which is not a basic closed semi-algebraic set (as observed by Lojasiewicz, see

[AR94]), and hence π(V) has infinite limit complexity.

Similarly we can look at the the category of semilinear sets with affine maps as morphisms

and it turns out that again, Cclim
SL·→·,A

(imSL) is not polynomially bounded. Proof can be found

here [BI17]

This leads us to the natural question i.e. whether having mixed limits can help us?

Open Problem 5.1 [Categorical P vs NP]

Are the functions

Ccmixed
SL·→·,A

(imSL), Ccmixed
SA·→·,A

(imSA)

polynomially bounded ?

The paper claims that this is a categorical analogue of the famous P vs NP question.

Not just this we can look at the image functor in a variety of categories and maybe even

draw up simialar analogues for VP vs VNP or other such related questions.

13

Bibliography

[AR94] Carlos Andradas and Jess M. Ruiz. Ubiquity of ojasiewicz’s example of a nonbasic

semialgebraic set. Michigan Math. J., 41(3):465–472, 1994.

[BI17] Saugata Basu and M. Umut Isik. Categorical Complexity. 2017. arXiv, Preprint.

[Kal88] Erich Kaltofen. Greatest Common Divisors of Polynomials Given by Straight-line

Programs. J. ACM, 35(1):231–264, jan 1988.

[Str73] Volker Strassen. Vermeidung von Divisionen. Journal fr die reine und angewandte

Mathematik, 264:184–202, 1973.

14

http://dx.doi.org/10.1307/mmj/1029005073
http://dx.doi.org/10.1307/mmj/1029005073
http://dx.doi.org/10.1145/42267.45069
http://dx.doi.org/10.1145/42267.45069
http://eudml.org/doc/151394

	Introduction
	Attempt at Unification

	Diagram Computation
	A basic example
	Cost of Computation

	A Useful Theorem
	Simulating ACC
	Arithmetic Circuit Complexity
	ACC and R-Modules

	Image Functor and P vs NP
	Semi Algebraic Sets
	Limit Complexity in SA

